

1 TITLE: *Mars Global Surveyor's Mars Orbiter Camera (MOC) Wide-Angle Images (1999–*
2 *2006): 2. Data Investigation into North Polar Hood Formation, Broad Brightness Changes in*
3 *Acidalia, and Seasonal Frost in Hellas*

4

5 Stuart J. Robbins^{*,a} ORCID: 0000-0002-8585-2549

6

7 *stuart@boulder.swri.edu

8 *Corresponding Author

9 ^aSouthwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, United States

10

11 Submitted to *Journal of Geophysical Research—Planets*: 27 September 2021

12 Resubmitted in part to *Journal of Geophysical Research—Planets*: 11 October 2022

13

14 Total Pages – 41; Total Tables – 0; Total Figures – 8; Archived Data – NO

15

16 Note to Editor(s) and Reviewer(s): This manuscript was originally submitted to *JGR-P* with the
17 data processing methods and observations about Mars in a single manuscript. Reviewers
18 requested some significant revisions and more detail about new observations, so the manuscript
19 was rejected with the invitation to resubmit. After revisiting my processing pipeline, I employed
20 new methods I had developed for processing MARCI data, and I decided that this work should
21 be split in two due to length. The "non-hypothesis-based" first manuscript details how the data
22 were processed and was submitted to *ESS* contemporaneously to this. This second manuscript
23 looks at new science observations with the data processing method excised has been re-
24 submitted to *JGR-P*. I refer in both to the other one as a companion manuscript, despite them
25 being submitted to separate journals (I was instructed that the methods-based one could not go to
26 *JGR-P*). I have also uploaded both, *with* in-manuscript figures, to my personal website
27 (<http://www.sjrdesign.net/MOCWA>) so that reviewers can see the other one if desired; I have
28 also included the Response to Reviewers in *both* submissions since the original *JGR-P* review
29 contained questions about the data-processing. They are in the preview data directory:
30 <http://www.sjrdesign.net/MOCWA>

31

32 Additional Editorial Note: A few sentences in the second paragraph of this manuscript's
33 Introduction are practically identical to those in the first paragraph of the companion's because
34 that is the best way I could think of to describe the camera/spacecraft.

54 Key Points:

55 • A new archive of Mars Orbiter Camera Wide-Angle (MOC-WA) images is mined to
56 show several known variations of Mars' surface.

57 • A new atmospheric study identifying earlier onset of Mars' North Polar Hood formation
58 is demonstrated.

59 • New studies showing brightness variations in Acidalia and the growth and decline of
60 seasonal frost in Hellas are described.

61

62

63 Plain Language Summary (200-word limit):

64 The first modern craft to orbit Mars was NASA's *Mars Global Surveyor*, which had the
65 Mars Orbiter Camera. A wide-angle component of that camera took daily global red- and blue-
66 color images during the camera's lifetime, from 1999 through 2006. That dataset has been
67 reprocessed with modern techniques, mosaicked, and grouped into several different time
68 intervals for different types of scientific investigations, and an approximate true-color set of
69 mosaics was also created. Those recently released mosaics reveal a dynamic world of huge
70 cloud systems, changing surface patterns, seasonal changes in frost and ice cover, and vast polar
71 cloud systems as each hemisphere slips into winter. To validate this new work, the reprocessed
72 images are investigated and shown to reveal numerous broad types of surface and atmospheric
73 changes that have been previously demonstrated by other researchers. To show new science that
74 can be done with this work, the data were also examined to study how polar clouds merge
75 together during winter, how the brightness of some features change seasonally, and how frost
76 builds and declines in a vast crater in winter.

77

78 Abstract (250-word limit):

79 Mars Orbiter Camera Wide Angle (MOC-WA) images were taken from late 1999
80 through most of 2006, in both red and blue, providing nearly daily, nearly global coverage of
81 Mars for approximately four Mars Years. Significant work has been published from those data,
82 but there did not exist a uniform, full time series processing of the data for easier analysis. The
83 companion work to this (Robbins, 202X) presents that processing of the data, producing the full
84 time series in both colors, in equirectangular and polar stereographic projections, in mosaics that
85 have been binned into four different time intervals (daily, $\Delta L_s = 2^\circ$, 5° , and 10° [≈ 4 through 19
86 days]) as approximately true-color composites. The multi-dimensional dataset can be mined for
87 surface and atmospheric variations on Mars. To demonstrate basic agreement with past work,
88 several well known trends are demonstrated, including changes after a global dust storm,
89 seasonal frost and ice variations to the poles, and overall surface variations from year-to-year.
90 The data are then analyzed further to demonstrate that the North Polar Hood can form earlier
91 than previously demonstrated, that Acidalia has significant seasonal brightness variations that
92 can be quantified with these data, and the seasonal frost deposition and sublimation of Hellas is
93 quantified. These different investigations represent just a small slice of what can be done now
94 that these data are made available in readily accessible formats.

95

96

97 Keywords: Mars; mosaic; global data; dust; clouds; ice

98

99 **1. Introduction and Context**

100 A fleet of Mars-observing platforms has provided practically global, continuous coverage
101 of the red planet for more than 23 years, since NASA's *Mars Global Surveyor (MGS)* entered
102 orbit in September 1997, and it began to take regular science data nearly two Earth years later.
103 The *MGS*'s primary camera, Mars Orbiter Camera (MOC; Malin et al. 1991), began
104 commissioning images in March 1999, and science images began April 3, 1999. The camera
105 returned images through October 15, 2006. The wide-angle component of MOC (MOC-WA)
106 had a 140° field-of-view which, at its altitude of 373–437 km, meant it could capture pole-to-
107 pole images with nearly continuous longitude coverage over 13 orbits with both its red (575–625
108 nm) and blue (400–450 nm) cameras. On Mars, red light mostly captures the surface, while blue
109 light is much more sensitive to atmospheric clouds and haze. With an orbital period of 1.95
110 hours and inclination of 92.5°, the images were taken with an approximately consistent solar
111 illumination of the entire disk, every day (except for when issues arose), for over seven Earth
112 years, corresponding to just over four Mars Years (MY24–28). These images provided nearly
113 daily, global, resolved coverage of Mars from orbit. This dataset presents the only consistent
114 orbital atlas of Mars for this time period, can be mined to better understand how Mars changed
115 during those years, and place those changes in context with what we have learned about Mars
116 throughout the decades.

117 The companion work to this (Robbins, 202X) presents details of a thorough reprocessing
118 of the MOC-WA image data for those images in spatial summing modes 8, 10, 13, and 27 that
119 returned approximately pole-to-pole-spanning views. In that work, the data were processed with
120 an average photometric correction, had additional empirical flat-fields applied, and were
121 rendered at 9 pix/deg (\approx 6586 m/pix at the center of the projection). In the archive accompanying
122 that work, the data are presented in many ways: {time averages: daily, $\Delta L_s = 2^\circ$, $\Delta L_s = 5^\circ$, $\Delta L_s =$
123 10° } \times {projections: equirectangular, north polar stereographic, south polar stereographic} \times
124 {incidence angle cutoffs: $\leq 75^\circ$, $\leq 90^\circ$ } \times {color: blue, red, red-(synthetic)green-blue composite}.

125 Therefore, this large archive not only presents three dimensions of data to be analyzed (spatial,
126 temporal, color), but one can do so using 72 different sets.

127 There are many published works that use the MOC instrument dataset, though the
128 majority focus on the higher spatial resolution data (*e.g.*, MOC-WA spatial summing mode 1)
129 and those images from the narrow-angle component (MOC-NA). Still, a sizeable body of work
130 has used the global coverage data, though none processed the complete dataset as in the Robbins
131 (202X) companion work, and extremely few make use of the entire time series.

132 The purpose of this work is to first demonstrate that this reprocessing clearly shows
133 several well-known phenomena on Mars, as a basic quality check, which is discussed in narrative
134 form in section 2. Section 3 begins to use this new archive to perform new science
135 investigations, beginning with the color composites' demonstration that the North Polar Hood
136 can form earlier than previously described. Section 4 performs a new science investigation using
137 the red light component of MOC-WA to quantitatively look at seasonal brightness changes in
138 Acidalia. Section 5 uses the blue mosaics to examine the growth and retreat of frost in Hellas
139 basin, something that has not been described in detail before. Section 6 contains a summary and
140 discussion.

141 **2. Large-Scale Observations of Mars' Changing Surface and Atmosphere**

142 Numerous features are named in this and the next section, and they are labeled in Figure
143 1. This section is meant to show the broad utility of the dataset for identifying features and their
144 changes, and how these data can be used to show what others have found when also using these
145 or related data, such as the report of James & Cantor (2002) covering roughly the first full Mars
146 Year of MOC-WA data.

147 **2.1. Data Analysis Method: Color Composites**

148 *2.1.1. Approximate True Color Composites*

149 For much of the analysis in this and later sections, visual inspection was done on both the

150 greyscale red or blue images as well as on synthetic three-color composites. Due to some
151 cartographic control issues and camera models that could be improved, there is some red-blue
152 fringing, especially visible near the poles in the individual orbits. See Robbins (202X) for
153 additional processing details.

154 *2.1.2. RGB and RC Color Composites to Identify Differences*

155 A second method was used in some circumstances to create false-color composites to
156 help identify changes. The RGB method takes any three images (in the same projection, and
157 from the same filter), and sets one image to red, another to green, and the third to blue; the RC
158 method sets one to red and the other to cyan. The blending mode is "screen" in either case,
159 which is a common method to make these composites (screen for two images with brightnesses a
160 and b in a given pixel location is defined as $f(a,b) = 1 - (1-a) \cdot (1-b)$). The effect is that any lighter
161 component from any image becomes apparent so that image's color dominates at that pixel.
162 Therefore, for RGB, if there is a region where the image set to green is brighter, it will appear
163 green in the composite. If there is a region where any two are brighter than the third, it will
164 appear as the additive color of the two: yellow, cyan, or magenta. For the RC method, areas
165 where the two images are the same brightness will be greyscale. (While it is perhaps undesirable
166 for the sum of red/cyan to be greyscale due to the red/blue nature of the cameras' sensitivity, the
167 colors *must* be 180° of hue apart, and they must be quantized in 60° options [e.g., pure red, or
168 pure yellow] for proper rendering in a given colorspace. For best colorblind-safe visibility, red-
169 cyan was selected.) Figure 2 shows these colorscales. This method is useful when visually
170 searching for subtle, smaller changes.

171 **2.2. Global Weather Patterns and Most Persistent Clouds**

172 Before describing observations from this time series, it should be noted that a *substantial*
173 body of work exists that has studied and analyzed the Martian atmosphere and clouds, including
174 the recent book, The Atmosphere and Climate of Mars (Haberle, Clancy, Forget, Smith, and
175 Zurek, eds., 2017). Past work includes everything from Earth-based telescopic observations to

176 space-based telescopic observations, and early Mars flyby craft from *Mariner* through modern
177 missions by a variety of world space agencies. Attempts have been made to cite some of the
178 relevant literature that first identified the features discussed herein using MOC-WA data, while
179 acknowledging that a thorough reference list would number into the hundreds. In particular for
180 this first science subsection, the work of Benson et al. (2003, 2006) involved identification and
181 measurement of clouds around the primary martian volcanoes and western region of the Valles
182 Marineris canyon system over the course of three Mars Years, and they identified many of the
183 trends noted below. The earlier work of Wang & Ingersoll (2002) is another seminal article
184 which describes the phenomena discussed in this section, including the aphelion cloud belt, from
185 one Mars Year of MOC imaging; Cantor et al. (2002) also describe atmospheric phenomena
186 spanning three seasons of northern summer, going back into some of the pre-commissioning data
187 in 1997.

188 The most persistent and large cloud features visible in the mosaics surround the four
189 tallest Tharsis volcanoes. Clouds can be seen on or around them in practically all mosaics,
190 though they grow and shrink in intensity and occasionally disappear around some. For example,
191 during the southern summer, all but the clouds around the southernmost Arsia Mons disappear,
192 and those around Arsia reach a minimum opacity around $L_s \sim 320\text{--}340^\circ$. They are significantly
193 diminished around Arsia starting at $L_s \sim 220^\circ$, practically disappearing in MY26 between $L_s =$
194 210° to 220° , but they are still very faintly present. Clouds around Elysium Mons are similarly
195 persistent in most mosaics, but being at a slightly more northern latitude than Olympus Mons,
196 clouds around Elysium tend to disappear after the $L_s = 180^\circ$ equinox.

197 Another persistent cloud formation near a volcano is the lee clouds northeast of Alba
198 Mons, the northernmost of the large Tharsis volcanoes. Lee clouds are seen near it starting $L_s \sim$
199 350° and persist until $L_s \sim 220^\circ$. Due to the public interest, it must be noted this is *not* the same
200 as the extremely elongated cloud (~ 1800 km long, ~ 10 km wide) sometimes seen from Arsia
201 Mons, most recently described by Hernández-Bernal et al. (2021). That cloud occurs near $L_s \sim$
202 $220\text{--}320^\circ$ (the *opposite* time as the above lee clouds) but is purely a morning phenomenon,

203 starting before sunrise and lasting a few hours. Because MOC-WA imaged consistently in early
204 afternoon, it does not appear in the MOC-WA timeseries.

205 The clouds surrounding all volcanoes, and cloud cover in general, is most significant near
206 northern summer solstice ($L_s = 90^\circ$). This resolved time series shows they begin to significantly
207 grow in extent and opacity starting $L_s \sim 60^\circ$, and they are significantly diminished by $L_s \sim 140^\circ$,
208 practically symmetric about the solstice.

209 Beyond the clouds surrounding the volcanoes, another distinct, seasonal feature is an
210 equatorial cloud belt that rises to prominence between the two equinoxes that bracket northern
211 summer, described in some work as the "aphelion cloud belt" (beginning with Clancy *et al.*,
212 1996), given that Mars' aphelion is $L_s \approx 71^\circ$. In Mars Years 26–27, hints of its formation began
213 as early as $L_s \sim 30^\circ$, but it was apparent in MY 25–28 by $L_s \sim 50^\circ$. It is most prominent between
214 approximately -10°N to $+30^\circ\text{N}$, and it dissipates by $L_s \sim 200^\circ$.

215 Finally, a prominent, repeating cloud feature is the north polar hood, a band of clouds that
216 covers the north pole. While the south polar hood is also well known, it is significantly smaller
217 in extent than the north polar hood, and only prominent in the $i \leq 90^\circ$ mosaics. Both of these are
218 discussed in later sections.

219 **2.3. Effects of Dust Storms**

220 While there were plenty of atmospheric phenomena, including localized dust storms in
221 MY24–28, the primary dust storm of the *MGS* mission occurred in MY25 (late 2001). The 2001
222 global dust storm has been studied by numerous researchers, with perhaps the primary work
223 cited being Cantor (2007), who detailed MOC observations of the storm as it grew, covered
224 Mars, and eventually dissipated. Another important article that placed the dust storm in context
225 with later ones is by Wang & Richardson (2015), who used daily maps from MOC-WA and
226 MARCI to track not only the global storms from 2001 and 2007, but 63 other large dust storms
227 during 1999–2011.

228 In this work, the focus is on changes before versus after the storm. The $\Delta L_s = 10^\circ$

229 timeseries shows that $L_s = 180^\circ$ in MY25 is practically identical to MY24 and MY26, but by $L_s =$
230 190° , surface features were substantially obscured. For $L_s = 210^\circ$, all that is apparent is a darker
231 mid- to high-northern latitude band, the frost line in the southern hemisphere, the tops of the
232 tallest Tharsis volcanoes (indicating the vertical extent of the dust storm did not create an
233 optically thick atmosphere at +15 km), and very dark features along the southern margins of
234 Tharsis and Elysium. This is a case where the $\Delta L_s = 10^\circ$ can give a false impression: Looking at
235 finer time-scale mosaics, various other surface features are visible at any given time, often
236 covered with optically thin dust clouds, but the rapidly moving, optically thick dust obscures
237 those features in the longer time averages. The individual orbit mosaics show large amounts of
238 dust clouds as early as orbit 10,215 ($L_s = 181^\circ$), but they are transient and localized. By orbit
239 10,278 ($L_s = 184^\circ$), large dust cloud fronts covering thousands of kilometers are visible, which
240 rapidly spread across Mars (illustrated well in Cantor, 2007, so not shown here).

241 Figure 3 shows an RC composite for $L_s = 180^\circ$ vs 270° for both red and blue; many of the
242 changes observed were discussed in Cantor (2007), but this type of analysis makes many of those
243 changes more obvious, and they did not discuss blue reflectivity changes. Besides the seasonal
244 southern frost showing prominently as red in both panels, and clouds near the Tharsis volcanos
245 as deep red in the bottom (blue camera) panel, there are substantial changes across Mars that
246 cannot easily be correlated with topography, specific geology, nor geographic province. For
247 example, in red light, the outskirts of Olympus Mons were brighter before the storm, the mid-
248 flanks were brighter after, and the caldera brighter before. Overall, Mars was brighter in red
249 light after the storm, indicating a veneer of dust deposition covering darker material (assuming
250 proper camera calibration). This is especially true throughout Syrtis Major, and the dark regions
251 of the North/South dichotomy boundary receded several hundred kilometers after the storm,
252 though Terra Meridiani is an exception in that it was brighter in red light before. The western-
253 most region of Noctis Labyrinthus (western Syria Planum) has a bright cyan area hugging it that
254 changes to a broader red area in Figure 3A, indicating a significant change to be brighter after the
255 dust storm right next to the canyon, versus much brighter before the storm to the southeast.

256 In blue light, the differences are more muted, though this could be due to the lower
257 signal-to-noise. However, the same trend seen in red light appears for Olympus and Elysium
258 Montes, while most of the southern hemisphere appears brighter in blue light after the dust
259 storm. There is a line of red connecting the three Elysium Planitia volcanoes that then arcs
260 around the Elysium Mons flank, indicating this area was brighter before than after, but this could
261 is likely due to clouds that dissipated sometime between equinox and southern summer. Tharsis
262 in general was brighter before than after, as was most of the surface surrounding Valles
263 Marineris, but both are likely due to the aphelion cloud belt dissipating. Interestingly, Valles
264 Marineris stands out clearly in Figure 3B as a neutral color, indicating it was approximately the
265 same brightness before and after the storm.

266 **2.4. North Polar Phenomena**

267 North polar phenomena observed with MOC (and MARCI) are reviewed in a large part
268 by Cantor et al. (2010) who combined MOC-WA and MARCI data, and this work tends to
269 reproduce many of their observations. Additionally, Calvin et al. (2015) provides a good
270 overview of the surface features observed here with MOC-WA, but identified in subsequent
271 years with MARCI. As with section 2.2, Wang & Ingersoll (2002) also have a good overview of
272 the atmospheric observations discussed here, but their work only covers the first Mars Year of
273 MOC's operation.

274 *2.4.1. North Polar Hood (Cloud Cover)*

275 The north polar hood (NPH) has been known since the era of telescopic observations and
276 was studied from the first orbital photography as far back as *Mariner 9* (Briggs & Leovy, 1974).
277 Due to various factors including topography and Mars' eccentric orbit, the NPH is significantly
278 more extensive and longer-lasting than the corresponding south polar hood. Wang and Ingersoll
279 (2002), who studied the first year of MOC-WA data, found the NPH forms during $L_s \sim 160^\circ - 185^\circ$;
280 this was replicated in Calvin et al. (2015) who found in MY29 and 30 that it formed at $L_s \sim 158^\circ$. Similar results are found here for each MOC-WA-covered Mars Year, except MY27 when

282 the hood began to form as early as $L_s \sim 140^\circ$ (discussed in section 3). It is still optically thin in
283 $L_s \sim 170^\circ$ mosaics, but by $L_s = 180^\circ$, the hood is opaque in every Mars Year covered by these
284 data. The hood persists through southern summer and the following equinox, dissipating by $L_s \sim$
285 40° , meaning it persists across $\sim 200^\circ$ of Mars' orbit.

286 *2.4.2. Seasonal Frost Deposition and Retreat to the Residual Ice Cap*

287 Substantial work could be done analyzing polar frost deposits and the residual cap from
288 these mosaics, and some work with these data has been done by James & Cantor (2001), Benson
289 & James (2003), Calvin *et al.* (2015), though the latter relied mostly on MARCI data; earlier
290 work spanned telescopic observations (*e.g.*, Herschel, 1784, Slipher, 1962, Iwasaki *et al.*, 1979,
291 1982, 1984, 199, Cantor, 1998) and early spacecraft observations (*e.g.*, Soderblom *et al.*, 1973,
292 James, 1979, 1982). In the interest of space, a basic analysis of extent and yearly differences are
293 presented here. In general, the seasonal water and CO₂ cycle – of which the NPH is a component
294 – deposits a circular region of surface frost that extends almost as far south as the NPH's extent,
295 to roughly the latitude of Lyot crater ($\sim +50^\circ$ N). As the region transitions to summer, the roughly
296 circular frost line retreats towards the residual cap in a mostly repeatable, fairly linear pattern
297 from year-to-year (*e.g.*, Benson & James, 2003). By the summer solstice, all of the seasonal
298 frost disappears, leaving the residual cap. The residual cap remains stable (at MOC-WA scales)
299 until it fades from view under the NPH and winter night.

300 Despite remaining relatively static past the solstice, the residual cap is still revealed as a
301 dynamic feature in these data, which are presented here in a novel way: Figure 4 illustrates in
302 the top row an RGB composite as the season progresses past summer solstice for MY25, 26, and
303 27. The ice does not significantly retreat further after the solstice. However, there are
304 substantial brightness variations across the cap. Starting at lower latitudes, the detached ice
305 roughly symmetric about the antemeridian appears bluer, indicating it is brighter near $L_s = 130^\circ$
306 than at $L_s = 90^\circ$ or 110° . On the cap, as one approaches the north pole, the colors shift along the
307 rainbow from blue to red, indicating progressive brightening along lower latitudes as the season

308 progresses, and darkening towards the middle as the season progresses. There are small areas of
309 saturated red in the troughs, indicating some minor ice retreat (at MOC-WA scales) after the
310 solstice. The ice cap is bluer at the southern-most extent over longitudes $\sim 0\text{--}90^\circ$, indicating
311 brightening of some form at $L_s \sim 40^\circ$ past the solstice, possibly from dust being removed to
312 reveal the brighter ice, or simply deposition of CO_2 and H_2O frost (Byrne *et al.*, 2008).

313 The cap also shows secular variations from year-to-year, illustrated in Figure 5 with the
314 splashes of color throughout, indicating differing ice extent in different locations per year, with
315 no apparent pattern.

316 *2.4.3. Variations Near the Cap (North of $\approx 60^\circ\text{N}$)*

317 Examining the full time series color mosaics, relatively little in the north changes from
318 year-to-year that has not been already discussed. While there appear to be some overall color
319 and possibly some contrast changes, these cannot be ruled out as instrument fluctuations. What
320 is likely not an instrument fluctuation is that the north polar cap appears to darken in its center
321 starting $L_s \sim 130^\circ$. It is possible that this is unaccounted for limb darkening or atmospheric
322 scattering, but that is unlikely given the $i \leq 75^\circ$ clip, and that cutoff does not begin to exclude
323 polar pixels until $L_s \sim 150^\circ$; this type of darkening was also observed by Byrne *et al.* (2008)
324 using the Mars Orbiter Laser Altimeter as a passive radiometer, and they attributed the darkening
325 to topographic shading. Turning to Figure 4 to try to discern more subtle changes, there are
326 large, cohesive blobs of color surrounding the pole in each Mars Year that are not the same
327 (though they are similar in MY26 and MY27). This indicates that as summer turns to autumn,
328 there are brightness differences that are not symmetric about the pole. However, any particular
329 pattern is not obvious. It is possible that this signals the beginnings of highly variable clouds as
330 the season progresses that will eventually form the polar hood, or sub-pixel-scale topographic
331 shading, but that is not clear in these data. Figure 5 shows similar large splotches of color
332 surrounding the poles at $L_s = 90^\circ$, indicating brighter material in MY26 and MY28 near Acidalia,
333 but the yellow elsewhere indicates brighter material near MY26 and MY27 elsewhere.

334 **2.5. South Polar Phenomena**

335 South polar phenomena observed with MOC-WA do not have a general manuscript
336 similar to Cantor *et al.* (2010) for the north. Calvin *et al.* (2017) provide a good overview of the
337 surface features observed here with MOC-WA, but identified in subsequent years with MARCI.

338 *2.5.1. South Polar Hood (Cloud Cover)*

339 The south polar hood (SPH) is formed the same way as the north, from a series of storms
340 that merge as the season changes from southern summer to autumnal equinox. Wang and
341 Ingersoll (2002) characterize the start near $L_s \sim 340^\circ$, and there is continued growth through the
342 winter. While this phenomenon is more clear in daily mosaics, in any of the ΔL_s time-averaged
343 mosaics here, the SPH is *much* less obvious than the NPH. This is because it is significantly
344 more optically thin, something that has been known for many years (*e.g.*, Clancy *et al.*, 2017,
345 and references therein). Also apparent is that the south pole appears to darken around $L_s \sim 290^\circ$,
346 but this seems to be a surface phenomenon rather than atmospheric because the residual cap
347 retains its brightness as it shrinks (see next sub-section); Byrne *et al.* (2008) also note that the
348 brightness of the cap itself is fairly stable until later in the season when it darkens, again
349 attributed to topographic shading at the <80 cm relief level.

350 Cloud formation is not obvious until almost the equinox, at which point features lose
351 contrast in a way that can be attributed to atmospheric obscuration. Clouds and haze are more
352 apparent after the $L_s = 0^\circ$ equinox, but they are close to the terminator and therefore hard to
353 identify in the $i \leq 75^\circ$ mosaics; they are slightly more apparent in the $i \leq 90^\circ$ mosaics, and they
354 are significantly more apparent in daily mosaics – something that Wang *et al.* (2011) tracked
355 over the course of the full time series. Clouds and haze are most prominent near $L_s \approx 10\text{--}20^\circ$,
356 extending as far north as southern Argyre and Galle crater ($\sim 50^\circ\text{N}$). Additionally, there is
357 significantly more frost cover around the south pole during its winter than the north, such that
358 differentiating between atmospheric clouds and ground ice is more difficult with just these
359 images. (The more extensive frost is due to colder temperatures since Mars is near aphelion

360 during southern winter.) Based on coloration of the south polar cap region, assuming the hood is
361 more orange than white in these composites, it appears as though the clouds mostly dissipate by
362 $L_s \sim 230^\circ$. If this color can be a reliable indicator, it is a similar L_s duration as the NPH.

363 *2.5.2. Seasonal Frost Deposition and Retreat to the Residual Ice Cap*

364 James et al. (2001) provide a detailed analysis of the cap's recession and brightness based
365 on one year of MOC-WA data (1999–2000), similar to their 1979 work (James et al., 1979),
366 while the purpose here is to show similar – if more abridged – trends when looking at the entire
367 MOC-WA timeseries. As in the north, seasonal frost is deposited during south polar night and
368 twilight that extends north to Galle ($\sim 50^\circ\text{N}$). Due to the substantial topographic roughness in
369 the southern hemisphere, in contrast with the northern, the seasonal frost extends into crater
370 floors at a given latitude before the surrounding terrain, typically beginning at the northern walls
371 and floors of those craters since they receive less direct sun. Starting $L_s \sim 50^\circ$, both Hells and
372 Argyre begin to fill with ice, as well; the ice in northern Hellas (present by $L_s \sim 90^\circ$) is the
373 northern-most extent of the seasonal frost, and it persists there until $L_s \sim 140^\circ$, disappearing from
374 most of Hellas within just a few weeks (see section 5). The retreat from the mid-latitudes is very
375 consistent across Mars Years.

376 Due to topography variations, by $L_s \sim 180^\circ$, the circular frost around the pole becomes
377 more hexagonal. At $L_s \sim 230^\circ$, the ice's outline takes a much less regular shape. Part of this is
378 due to the ice on the Mountains of Mitchel (Mitchel, 1846) that extends beyond the defrosting
379 pole by $L_s = 230^\circ$, and the mountains' ices fully detach from the retreating cap between $L_s = 260\text{--}270^\circ$.
380 As noted in Bonev *et al.* (2002), but extended here another two Mars Years, the
381 Mountains of Mitchel have highly variable frost cover from year-to-year during southern
382 summer at a given L_s , even at MOC-WA resolution; this is partly illustrated in the bottom panel
383 of Figure 5, which shows the mountains as white in just a few pixels in the middle (same ice
384 cover across years), yellow-orange west of that (more ice in MY24 and 26), and red east of that
385 (more ice in MY24). The seasonal frost in these images is always less bright than the residual

386 cap.

387 As noted for decades, the south residual cap is much smaller than the north's. As shown
388 in Figure 4, it continues to shrink well after the southern solstice, again in contrast with the
389 north's. Familiar dark troughs within the ice do not appear until $L_s \sim 300^\circ$. Figure 4 is otherwise
390 uninformative with respect to periodic or secular changes within $\sim 30^\circ$ latitude of the pole, unlike
391 for the north residual cap. Returning to Figure 5, besides the above-discussed Mountains of
392 Mitchel, the ice cap at $L_s = 270^\circ$ across three Mars Years shows substantial variation, as the
393 north cap did and as Calvin *et al.* (2017) demonstrated with MARCI data. In interpreting this, it
394 must be first recognized that roughly half of the ice extent at the south pole during the summer
395 solstice is still seasonal frost, unlike the north. With that in mind, the most substantial secular
396 differences are seen in this seasonal frost region, stretching from $\sim 210^\circ$ E, clockwise in the
397 Figure, to $\sim 30^\circ$ E. The coloration in Figure 5 appears as a mottling of mostly yellow and green,
398 indicating more ice extent in both MY26 and the combination of MY24 and 26. Opposite and
399 much closer to the residual cap, the ice fringes appear blue and purple, indicating more ice extent
400 in those areas in both MY24 and 27, in contrast to MY26.

401 *2.5.3. Variations Near the Cap (South of $\approx 60^\circ$ S)*

402 In contrast with the north, the south polar cap in the color mosaics appears to show some
403 drastic brightness and color changes that are not attributable to a capricious instrument. After
404 passing through summer solstice, beginning just outside the ice cap and spreading out from there
405 as L_s increases, the surface appears both darker and redder. This is not an instrument issue and
406 probably not topographic shading because it varies across Mars Years in intensity and has a
407 highly limited latitude range. Figure 4 helps illustrate this, showing that in MY24 and MY25,
408 there is a yellow region surrounding the ice, indicating that it is much brighter in that area in red
409 light during $L_s = 300$ – 310° than at 320° . However, this is significantly muted in MY26, and it is
410 a blue ring in MY27 that indicates it is brighter in that area later in the season during that year.
411 The polar darkening persists until $L_s \sim 150^\circ$, over half of Mars' year. It is also more red in this

412 time, though it is possible that there is an undescribed systematic issue with the blue vs red
413 MOC-WA gain.

414 **2.6. Solis Planum**

415 Solis Planum (or Lacus in some works, despite the official IAU "Planum" designation),
416 approximately centered at $\sim 20^{\circ}\text{S}$, $\sim 85^{\circ}\text{W}$, is a 2.6 million km^2 region forming the southeast
417 portion of the Tharsis rise. Topographically, it is relatively flat, gently sloping southeast from
418 the topographic high at the western end of Valles Marineris. It is bound to the north by Valles
419 Marineris, and it is bound on all other sides by a nearly continuous set of ridges and mountains.
420 Conceptually, one might think of the entire region as a large sand trap, the mountains helping to
421 focus and contain material and setting up rebound effects if material cannot be lofted high
422 enough to escape the region. The only "out" is Valles Marineris, but global circulation models
423 indicate that, most frequently, winds flow southeast in the region, so Valles Marineris would not
424 be a common escape route (Forget *et al.*, 1999; Millour *et al.*, 2018).

425 With that context, Solis Planum has been known for over a century as the "Eye of Mars,"
426 so-called because of a somewhat common lenticular dark dust formation centered in an
427 otherwise lighter region, but it is a feature that frequently changes its appearance. Work from the
428 MOC-WA time sequence suggests this moniker and reputation is well earned, for it was one of
429 the most frequently changing regions observed (*e.g.*, Figure 6, which is described in detail in
430 section 2.9). Relatively little has been published on the topic of surface changes in modern peer-
431 reviewed literature, with most in the form of conference abstracts for the last several decades,
432 mostly based on *Viking* data (Huguenin, 1979; Mouginis-Mark *et al.*, 1980; Lee, 1986) but one
433 more recently based on HiRISE (Geissler & The HiRISE Team, 2012). Additionally, numerous
434 reports in the *Memoirs of the British Astronomical Association* describe it as a changing feature,
435 at least back to 1896 and at least as late as 1927.

436 While the MOC-WA time series itself shows changes, practically all of the other
437 composites also demonstrate this variability. Figure 3 shows that the northern half of Solis

438 Planum was much brighter before the global dust storm in MY25 than after, and the southern
439 half brighter after than before. The bottom row of Figure 4 shows that in MY26, it was brighter
440 towards the north for $L_s = 300\text{--}310^\circ$, and significantly brighter over a larger area to the south just
441 a few weeks later at $L_s = 320^\circ$. In MY27, it was significantly brighter in the center for $L_s = 310^\circ$,
442 but the dark lane's periphery was brighter for $L_s = 300\text{--}310^\circ$. In all four years, after southern
443 summer, the brighter area was a relatively constant reflectivity. The composite in Figure 5 and
444 series in Figure 6 show substantial changes across its surface during the four Mars Years
445 observed by MOC-WA, though at a broad scale (100s km), the brightness differences were
446 relatively stable *during* each Mars Year (the splotches of color remain fairly constant in each
447 column). This description indicates both annual and secular changes with no real discernable
448 pattern.

449 **2.7. Syrtis Major**

450 Syrtis Major is a relatively young topographic rise, centered at $\sim 8^\circ\text{N}$ $\sim 68^\circ\text{E}$, and covering
451 over 1.1 million km². It is between the lower elevation Arabia Terra to the west and north, Isidis
452 crater to the east, and Hellas crater to the south. It has two volcanic centers – Nili and Meroe
453 Paterae – which form a linked depression in the middle of the topographic high. Conceptually,
454 as a relative high, one might think that it would be devoid of dust that would preferentially settle
455 in the nearby Isidis basin to the east. However, general circulation models (GCMs) indicate that
456 the complicated regional topography tends to focus dust there from neighboring regions,
457 shearing material from the north, but bringing it in from Isidis to the east, while nearby areas
458 form an almost cyclonic pattern of air circulating throughout the area (Forget *et al.*, 1999;
459 Millour *et al.*, 2018; Read *et al.*, 1997).

460 As with Solis Planum, Syrtis Major showed a substantial change after the 2001 global
461 dust storm, where the dark material that had dominated a wide area shrank to just a few core
462 regions, meaning the entire area brightened substantially (except the perimeter; also described in
463 Cantor (2007)). Figure 6 shows variation not only with Mars Year at a given L_s , but the

464 splotches of color that indicate brighter material present that year will shift, disappear, or appear
465 for a given L_s . That indicates Syrtis Major's brightness shifts differently, at different times in the
466 year, in a non-repeatable manner. It is important to demonstrate in this dataset for credibility that
467 known trends are visible, and these sorts of variations in Syrtis Major have been described
468 before. For example, as with Solis Planum, *Memoirs of the British Astronomical Association*
469 contains reports of Syrtis Major from at least 1895 to 1927; the *Annals of the Lowell Observatory*
470 include reports from at least 1896 to 1905, and *Popular Astronomy* published reports by Slipher
471 in 1921 and Hamilton that same year. One of the first modern peer-reviewed works was by
472 O'Leary & Jackel (1970), but even after that, most work focusing on Syrtis Major as a rapidly
473 changing albedo pattern are relegated to conference abstracts (e.g., Thompson, 1972; Lee, 1986;
474 and Zinzi, 2006).

475 **2.8. Valles Marineris**

476 Valles Marineris is the largest canyon system in the solar system, spanning >4,000 km in
477 length. It begins with the large feature, Noctis Labyrinthes, one of the highest points on Mars
478 that is not an identified volcanic center. Noctis Labyrinthes broadens into the better-known
479 features of Valles Marineris, which reaches a maximum depth of 7 km and width of 200 km.
480 Valles Marineris begins as a tectonic feature but appears much more fluvially modified as it
481 travels East, appearing to outlet into Chryse Planitia. Due to its substantial depth, one would
482 expect it to act as a sand trap, retaining dust brought in from surrounding regions. However, due
483 to the complicated interplay between it and the nearby Tharsis region on which it originates, it
484 has a much more complex and variable appearance in the MOC-WA time series.

485 First, Syria Planum, the small, dark feature that is just east of the westernmost portion of
486 Noctis Labyrinthes, changes in brightness throughout the time series. While the coloration in
487 Figure 6 might appear at first to remain stable in each column, there are shifts with L_s , indicating
488 that the variations are not wholly secular. This can also be seen in the bottom panel of Figure 5,
489 though over the short term of a single Mars Year, it can appear quite stable (Figure 4).

Following along the feature towards the east, there is relatively little that changes in Figures 5 and 6, though there are numerous variations along the dark, wind-blown region at the southern rim. This would indicate that variations within Valles Marineris tend to repeat annually. Looking to the bottom row of Figure 4 as an exemplar of variation over the course of several weeks shows that it is dynamic on timescales of weeks, especially towards the east. One of the largest areas of the canyon, Capri Chasma and Eos Chasma, along with Ganges Chasma to the north before it joins the main valley, appear distinctly variegated in the three-color composites of Figure 4. The chasmata are green/cyan/blue/purple, indicating that in different years, the different areas tend to be brighter later in the season rather than earlier (for this narrow L_s slice in Figure 4). MY25 shows the least amount of variation, while MY26 and MY27 show the most, with the variations travelling throughout most of the Valley back along Coprates and Melas chasmata. But, they are also different, where during MY26 the floor is brighter in $L_s = 320^\circ$, while during MY27 the green in the composite indicates it is brighter in $L_s = 310^\circ$. These weekly changes are again in contrast with Figure 6 which indicates general stability from year-to-year. Also, while these sorts of variations are generally known in the literature, there is little work that has set out specifically to describe them, instead tending to focus on clouds surrounding the valley (e.g., Benson et al., 2003 who used MOC-WA; Clancy et al., 2009 used MARCI; and Leung et al., 2016 used HRSC).

2.9. Additional Variations

Figure 6, which shows RGB composites of different Mars Years at different L_s , provides the basis for this section. First, different panels within it have a different overall color cast, such as the top-right ($L_s = 180^\circ$) being reddish overall. The overall cast indicates that Mars was brighter in that Mars Year (in that case, MY24), provided the caveat that there were no unaccounted-for gain changes in the instrument. Beyond what has been already discussed in this work, this section addresses four other areas of Mars; from West to East: A section of Amazonis Planitia, the margin between Chryse and Acidalia Planitias with Arabia Terra, the northern rim

516 of Schiaparelli crater, and the margin between the Elysium Mons flanks and Utopia Planitia.

517 There is a linear, roughly horizontal (line of latitude) dark feature in Amazonis Planitia at
518 $\approx 36\text{--}38^\circ\text{N}$, $\approx 195\text{--}205^\circ\text{E}$. South of this region is slightly lighter, but in Figure 6, the southern
519 margin of it ($\approx 30^\circ\text{N}$) appears multi-colored, indicating that there is significant brightness
520 variation from year-to-year. Put another way, this albedo feature varies in extent from year-to-
521 year. It is most clearly variegated for $L_s = 0^\circ, 60^\circ, 120^\circ$, and 300° . However, for $L_s = 300^\circ$, the
522 variation is different, where the entire bright region below the dark feature ($\approx 30\text{--}38^\circ\text{N}$) takes on
523 the various hues, indicating differences from year-to-year.

524 The western margin of Arabia Terra, where it intersects with the Chryse and Acidalia
525 planitias, also appears variegated in all L_s shown. It is rainbow, red to blue, from west to east,
526 indicating that lighter material from Arabia Terra extended farther West in earlier years and it
527 has moved East. Given the pixel scale of these data, the movement is roughly 15–20 km per year
528 on average. However, Wellington & Bell (2020) briefly mention this boundary and note that
529 they did *not* observe any shift with over a decade of the later MARCI data.

530 The large crater Schiaparelli is centered $\approx -3^\circ\text{N}$, $\approx 17^\circ\text{E}$. Robbins (2020) noted that most
531 craters had relatively stable reflectivity throughout the MOC-WA campaign (Hellas being a
532 notable exception), though the rim of Schiaparelli was visible as a variable feature. Figure 6
533 emphasizes this variability for Schiaparelli's northern rim, which appears brightly hued in all six
534 panels. In the left column, it appears cyan, while in the right column it appears more red. The
535 cyan indicates that, between MY26–28, it was brighter in MY27 and 28 for those L_s ; the red
536 indicates that, for MY24 and MY26–27, it was brightest in MY24 for those L_s . Schiaparelli is an
537 old crater, ~ 3.9 Ga (Robbins *et al.*, 2013), such that the rim and walls are practically non-
538 existent. Therefore, this brightness extends into the crater floor for 10s km and then simply
539 stops. There is no obvious topographic reason why this should be.

540 Finally, except for $L_s = 180^\circ$, the western through northern margin of Elysium Mons'
541 flanks appears variegated throughout the figure, indicating shifts of 10s km of the margins of
542 bright material on the flanks versus dark material in the surrounding Utopia Planitia.

543 **3. Exploring Changes in Mars' Atmosphere: North Polar Hood Formation**

544 Discussed in the previous section, the NPH is a persistent cloud formation that covers
545 much of Mars north of the arctic circle during its winter. It forms from the merger of other, more
546 ephemeral clouds. How soon it forms has implications for atmospheric modeling which includes
547 heat transfer and H₂O column density, so this investigation – while aimed towards showing the
548 utility of this dataset – has broader science implications.

549 For this investigation, the $\Delta L_s = 5^\circ$, then $\Delta L_s = 2^\circ$ mosaics were examined. The longer
550 averaging was used to initially narrow down when the NPH formed, while the shorter ones were
551 used to pinpoint the transition to ≈ 4 days' fidelity. The color composites were used rather than
552 blue-light mosaics because the more white cloud colorations stand out better than a blue
553 brightness map. The $i \leq 90^\circ$ mosaics were used because true brightness is unimportant for this
554 exercise – only whether what types of clouds are visible – and the hood forms in twilight areas
555 that would be masked by the $i \leq 75^\circ$ cutoffs. A non-quantitative, visual inspection is the basis
556 for this.

557 Using the criterion for when whiteish material mostly surrounds the north pole, the
558 MOC-WA data show that in MY24, this occurs for $L_s \approx 160\text{--}162^\circ$; for MY25, it occurs by $L_s \approx$
559 $158^\circ\text{--}160^\circ$; for MY26, it occurs by $L_s \approx 158^\circ\text{--}162^\circ$; and for MY27, it occurs by $L_s \approx 144^\circ\text{--}146^\circ$
560 (with full encircling by $L_s \approx 150^\circ$. This early of a development is not previously reported in the
561 literature, so far as we could tell, where Wang & Ingersoll (2002) reported $L_s \sim 160^\circ\text{--}185^\circ$ for
562 MY24, and Calvin et al. (2015) reported $L_s \sim 158^\circ$ in MY29 and MY30.

563 **4. Exploring Changes in Mars' Dust Cover: Acidalia Planitia**

564 Acidalia is a large, relatively flat, low-lying region in Mars' northern hemisphere,
565 centered at $\sim 50^\circ\text{N} \sim 20^\circ\text{W}$. It has Tharsis to the west, Chryse to the south, and Arabia Terra to
566 the southeast. North of it is Vastitas Borealis. It is a broad, dark feature unmatched in the
567 northern hemisphere, and with dark regions south of it, it forms a practically continuous dark
568 band from north to south across the planet. Therefore, when it fades or has portions that are

569 interrupted, it is noticeable in a montage of the red mosaics or color composites. This has not
570 been previously reported so far as we could (or, could not) find, and has implications for dust
571 transport throughout the region.

572 For this investigation, the $\Delta L_s = 10^\circ$ red mosaics for $i \leq 75^\circ$ in equirectangular projection
573 were used. This is a good mosaic set to use because the changes are to surface dust (best seen in
574 red light), they are no where near the arctic circles (such that $i \leq 75^\circ$ is sufficient), and the trend
575 occurs over a longer period of time where the most accurate brightness is desired ($\Delta L_s = 10^\circ$ is
576 both desired and sufficient).

577 Acidalia is most distinct as an albedo feature during northern summer, and it is least
578 distinct during southern summer. Indeed, in MY26 at $L_s = 320^\circ$, as a dark feature, it has
579 practically faded entirely, only to return to its previous darkness in MY27 during northern
580 summer. This is reflected in Figure 7: Excluding MY25 where there was unexplained red gain
581 sag ($L_s \sim 80$ – 160°) and a global dust storm, and excluding MY28 where there appears to be
582 additional gain sag, Acidalia (Figure 7A) and Chryse (Figure 7B) show similar reflectivity
583 between $L_s \sim 0$ – 180° . After that, Chryse remains a stable brightness, while Acidalia brightens,
584 and it brightens in MY27 almost to the same reflectivity as Chryse. This is more easily seen in
585 Figure 7C, which shows Acidalia relative to Chryse so removes any gain issues by treating
586 Chryse as a control. Using the relative plot, MY25 and MY28 follow the pattern of other years
587 despite the above-noted issues. The relative darkening of Acidalia during northern summer is
588 fairly consistent, while the relative brightening is consistent as a phenomenon that occurs, but it
589 is variable in its relative intensity.

590 **5. Exploring Changes in Mars' Frost: Hellas Basin**

591 Hellas is one of the lowest elevations on Mars, and as a large, mid-southern latitude
592 feature, it can get cold enough that frost deposits will form every year. These deposits have been
593 noted before, and even studied with the later MARCI camera (Calvin *et al.*, 2017). However, the
594 seasonal deposition and sublimation of the frost, and any interannual variability, has not been

595 studied with this dataset in this sort of detail.

596 For this investigation, the $\Delta L_s = 10^\circ$ blue mosaics with $i \leq 90^\circ$ were used. Blue light was
597 used because the frost appears significantly brighter in blue than the surrounding dusty material,
598 though the color composites could have been used and examined for white-appearing areas;
599 similarly, a ratio of blue:red could be used. The $i \leq 90^\circ$ were used because the frost develops and
600 expands when some of the area of interest is in twilight, which would be eliminated if $i \leq 75^\circ$
601 were used instead; however, one must be more cognizant of processing artifacts when using this
602 cutoff. The equirectangular projection was used due to the simplicity of the projection, though
603 the south polar projections would be a less distorted.

604 Initially, the approach was to map contiguous frost deposits manually in all $\Delta L_s = 10^\circ$
605 mosaics; however, the frost is so bright compared to the dust in blue light that a reasonable
606 automated thresholding could be used for the maps, instead, and then analyzed. Therefore, the
607 region of Hellas and its immediate surroundings was examined, a small Gaussian blur applied to
608 help reduce noise, and pixel values >0.075 were treated as having frost (e.g., Figure 8A). Once
609 the thresholding is done, one can simply count pixels and, scaling for $\cos(\text{latitude})$, use the 9 ppm
610 pixel scale to determine the area extent of frost as a function of time (Figure 8B).

611 The primary caveats to this method are two-fold. First, any thick, persistent clouds in the
612 area will also be counted, but that should be minimal (Wang *et al.*, 2011). Second is, if the frost
613 is darker – or the gain in blue sagged and was not accounted for – then the thresholding would
614 omit areas of frost since it is a simple cutoff. To mitigate this issue, a control region was
615 selected to the northwest of Hellas' rim. The mean of the control region's values for the full time
616 series were taken, the ratio of that overall mean vs. the mean of the control region at each time
617 interval was multiplied into the brightness of the image, and *then* the thresholding was done.

618 To wit, if the threshold value of 7.5% were raised or lowered, it does raise or lower the
619 amount of coverage in each image. This is unavoidable without, instead, performing detailed
620 ice/frost mapping. However, the relative results do not change: Regardless of using a threshold
621 of 0.05 or even 0.10, for example, there is less frost coverage in Hellas in MY25 than in other

622 years at $L_s = 85\pm 5^\circ$. Similarly, it is found that there is less frost coverage at $L_s = 135\pm 5^\circ$ in
623 MY26 than in other years – due to the systematic shifting of MY26's data, Hellas' frost cover
624 appears to both form and sublimate a few weeks earlier that year than during others (i.e., winter
625 came and went a few weeks earlier that year), but the total frost cover during $L_s = 100\text{--}120^\circ$ is
626 comparable to during other Mars Years. An additional feature visible in Figure 8B for all years
627 is that there is an initial rapid growth of frost for about 40 Mars days, followed by slower growth
628 until about $L_s = 125\pm 5^\circ$. After that point, the frost rapidly sublimates each year and is gone by L_s
629 = 150° .

630 **6. Summary and Discussion**

631 The MOC-WA catalog of limb-to-limb images of Mars, taken from 1999 through most of
632 2006, is a significant resource in which NASA invested starting more than three decades ago. A
633 newly processed version of the data provides a uniform, conveniently formatted archive of the
634 entire time series in both red and blue light. The data have been demonstrated to reproduce well
635 known features and trends about Mars, and the multi-dimensional dataset can be used for a
636 myriad of other scientific investigations into Mars' surface and atmospheric processes during that
637 four Mars Year time period.

638 This work also demonstrated additional changes on Mars through color composite
639 analyses, primarily illustrating those that did not repeat annually, such as variations in ice extent
640 at the poles and larger areas of relative brightening or darkening as seasons changed. In
641 particular, the data were used here to perform investigations into the onset time of the North
642 Polar Hood, the repeating variability in brightness of Acidalia, and the annual cycle of frost
643 deposition and sublimation in Hellas.

644 The MOC-WA dataset is not widely used today, likely because it is considered older,
645 worse quality than its successor, and it does not exist in an easy-to-use processed, archival form.
646 It is hoped that this work, demonstrating its utility for new analyses, and the companion work
647 (Robbins, 202X) that discusses the data processing, will show that useful information can still be

648 gleaned from these older generation data. Combined with MARCI, they present an almost
649 uninterrupted view of Mars from orbit spanning 1999 through the present day.

650

651 Acknowledgements: The author thanks B.J. Buratti and W.M. Grundy for useful discussions
652 about photometric correction, T. Stryk for useful discussions about three-color composites from
653 two colors, and T.M. Hare for innumerable emails about data repositories. The author
654 acknowledges several hundred hours of "free time" in the preparation of this manuscript and
655 dataset. The author acknowledges two anonymous reviewers and *JGR-P* Editor D. Rogers for
656 helpful feedback on a previous version of this work.

657

658 Conflict of interest: The author declares no conflicts of interest relevant to this study.

659

660 Data Availability Statement: The MOC reflectivity maps used in this work are available from
661 NASA's Imaging and Cartography Node (IMG) of the Planetary Data System (PDS) at Imaging
662 and Cartography Node (<https://ToBeFilledInIfAccepted>).

663

664 **Data Availability Statement for Manuscript Review:** As noted in the front material, NASA's
665 PDS "Imaging and Cartography" Node will be the final resting place for these data, which they
666 have agreed to. The URL will be something close to:
667 https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOC/Mars_Year24-28_MOCWAC_RedBlue_2022. Transferring the data to USGS will require shipping a hard
668 drive and effort on USGS's part, though they have agreed to this. Because I do not want to
669 burden them potentially multiple times, the intended PDS-like archive has been temporarily
670 placed on my own server: <http://www.sjrdesign.net/MOCWA>. Please use this for evaluation
671 purposes; any changes requested that are made will be to this preview version, and then that will
672 be what is shipped to USGS for final archiving. Please also note that the uncompressed archive
673 is ≈600 GB, so most folders have been compressed for download as single .ZIP files in this
674 preview version.

675

677 **References**

678 (1895) Reports of the Mars Section. VI Syrtis Major. in Memoirs of the British Astronomical
679 Association, 2, 182–189.

680 (1896) Report of the Mars Section. Solis Lacus and neighbouring region. in Memoirs of the
681 British Astronomical Association, 4, 112–113.

682 (1905) Opposition of 1896. From the Syrtis Major to the Indus. in Annals of the Lowell
683 Observatory, 3, 1:55–1:62.

684 (1905) Opposition of 1903. Syrtis Major and its surroundings. in Annals of the Lowell
685 Observatory, 3, 1:245–1:261.

686 (1927) Section for the Observation of Mars. 1919–1920. Section III. Solis Lacus. in Memoirs of
687 the British Astronomical Association, 27, 18–20.

688 (1927) Section for the Observation of Mars. 1919–1920. Section VI. Syrtis Major. in Memoirs of
689 the British Astronomical Association, 27, 29–34.

690 Benson, J. L., Bonev, B. P., James, P. B., Shan, K. J., Cantor, B. A., & Caplinger, M. A. (2003).
691 The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of
692 Mars: Mars Orbiter Camera Observations. *Icarus*, 165(1), 34–52.
693 [https://doi.org/10.1016/S0019-1035\(03\)00175-1](https://doi.org/10.1016/S0019-1035(03)00175-1)

694 Benson, J. L., & James, P. B. (2003). Yearly comparisons of the Mars North Polar Cap: 1999,
695 2001, and 2003 MOC observations. in Third International Conference on Mars Polar
696 Science and Exploration, Alberta, Canada.
697 <https://www.lpi.usra.edu/meetings/polar2003/pdf/8097.pdf>

698 Benson, J. L., James, P. B., Cantor, B. A., & Remigio, R. (2006). Interannual variability of water
699 ice clouds over major martian volcanoes observed by MOC. *Icarus*, 184(2), 365–371.
700 <https://doi.org/10.1016/j.icarus.2006.03.014>

701 Bonev, B. P., James, P. B., Bjorkman, J. E., & Wolff, M. J. (2002). Regression of the Mountains
702 of Mitchel polar ice after the onset of a global dust storm on Mars. *Geophysical Research
703 Letters*, 29(21). <http://doi.org/10.1029/2002GL015458>

704 Briggs, G. A., & Leovy, C. B. (1974). Mariner 9 observations of the Mars north polar hood. *Bull.
705 Amer. Met. Soc.*, 55, 278–296.

706 Byrne, S., Zuber, M. T., & Neumann, G. A. (2008). Interannual and seasonal behavior of Martian
707 residual ice-cap albedo. *Planetary and Space Science*, 56(2), 194–211.
708 <https://doi.org/10.1016/j.pss.2006.03.018>

709 Calvin, W. M., Cantor, B. A., & James, P. B. (2017). Interannual and seasonal changes in the
710 south seasonal polar cap of Mars: Observations from MY 28–31 using MARCI. *Icarus*,
711 292, 144–153. <https://doi.org/10.1016/j.icarus.2017.01.010>

712 Calvin, W. M., James, P. B., Cantor, B. A., & Dixon, E. M. (2015) Interannual and seasonal
713 changes in the north polar ice deposits of Mars: Observations from MY 29–31 using
714 MARCI. *Icarus*, 251, 181–190. <https://doi.org/10.1016/j.icarus.2014.08.026>

715 Cantor, B. A. (2007). MOC observations of the 2001 Mars planet-circling dust storm. *Icarus*,
716 186(1), 60–96. <https://doi.org/10.1016/j.icarus.2006.08.019>

717 Cantor, B. A., Malin, M., Edgett, K. S. (2002). Multiyear Mars Orbiter Camera (MOC)
718 observations of repeated Martian weather phenomena during the northern summer
719 season. *Journal of Geophysical Research*, 107(E3), CiteID 5014.
720 <https://doi.org/10.1029/2001JE001588>

721 Cantor, B. A., James, P. B., & Calvin, W. M. (2010). MARCI and MOC observations of the
722 atmosphere and surface cap in the north polar region of Mars. *Icarus*, 208, 61–81.
723 <http://doi.org/10.1016/j.icarus.2010.01.032>

724 Cantor, B. A., Wolff, M. J., James, P. B., & Higgs, E. (1998) Regression of Martian north polar
725 cap: 1990–1997 Hubble Space Telescope observations. *Icarus*, 136(2), 175–191.
726 <https://doi.org/10.1006/icar.1998.6020>

727 Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al.
728 (1996). Water vapor saturation at low altitudes around Mars aphelion: A key to Mars
729 climate? *Icarus*, 122(0108), 36–62. <http://doi.org/10.1006/icar.1996.0108>

730 Clancy, R. T., Montmessin, F., Benson, J., Daerden, F., Colaprete, A., & Wolff, M. J. (2017).
731 Mars Clouds. In R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek
732 (Eds.), *The Atmosphere and Climate of Mars* (pp. 76–105). chapter, Cambridge:
733 Cambridge University Press. <http://doi.org/10.1017/9781139060172.005>

734 Clancy, R. T., Wolff, M. J., Cantor, B. A., Malin, M. C., & Michaels, T. I. (2009). Valles
735 Marineris cloud trails. *Journal of Geophysical Research*, 114(E11), CiteID E11002.
736 <https://doi.org/10.1029/2008JE003323>

737 Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. (1999).
738 Improved general circulation models of the Martian atmosphere from the surface to
739 above 80 km. *Journal of Geophysical Research*, 104(E10), 24155–24175.
740 <http://doi.org/10.1029/1999JE001025>

741 Geissler, P. E., & HiRISE Team (2012). Persistent surface changes in Solis Lacus, Mars. in
742 Lunar and Planetary Science Conf. The Woodlands, TX
743 <https://www.lpi.usra.edu/meetings/lpsc2012/pdf/2598.pdf>

744 Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., & Zurek, R. W. (Eds.). (2017). *The*
745 *Atmosphere and Climate of Mars*. Cambridge: Cambridge University Press.
746 <http://doi.org/10.1017/9781139060172>

747 Hamilton, G. H. (1921). Changes in the Martian Syrtis Major opposition of 1920. *Popular*

748 Astronomy, 29, 73–76. <https://articles.adsabs.harvard.edu/pdf/1921PA.....29...73H>

749 Hernández-Bernal, J., Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Ravanis, E., Cardesín-
750 Moinelo, A., Connour, K., et al. (2021). An extremely elongated cloud over Arsia Mons
751 volcano on Mars: I. Life cycle. *Journal of Geophysical Research*, 126, e2020JE006517.
752 <http://doi.org/10.1029/2020JE006517>

753 Herschel, W. (1784) On the remarkable appearances at the polar regions of the planet Mars, the
754 inclination of its poles, and its spheroidal figure; with a few hints relating to its real
755 diameter and atmosphere. *Philosophical Transactions of the Royal Society of London*,
756 74, 233–273.

757 Huguenin, R. L. (1979). Mars: Remote sensing evidence for an oasis in the Solis Lacus region (–
758 25°, 85°). in Press Abstracts: Lunar and Planetary Science Conference, Houston, TX
759 <https://articles.adsabs.harvard.edu/pdf/1979LPICo.363...30H>

760 Iwasaki, K., Saito, Y., & Akabane, T. (1979). Behavior of the Martian north polar cap, 1975–
761 1978. *Journal of Geophysical Research*, 84, 8311–8316.
762 <https://doi.org/10.1029/JB084iB14p08311>

763 Iwasaki, K., Saito, Y., & Akabane, T. (1982). Martian north polar cap 1979–1980. in
764 International Colloquium on Mars, Pasadena, CA.
765 <https://doi.org/10.1029/JB087iB12p10265>

766 Iwasaki, K., Saito, Y., & Akabane, T. (1984). Martian north polar cap and haze 1981–1982.
767 Astronomical Society of Japan, 36(2), 347–356.
768 <https://articles.adsabs.harvard.edu/pdf/1984PASJ...36..347I>

769 Iwasaki, K., Parker, D. C., Larson, S., & Akabane, T. (1999). Martian north polar cap 1996–
770 1997. *Icarus*, 138(1), 20–24. <https://doi.org/10.1006/icar.1998.6061>

771 James, P. B. (1979). Recession of Martian north polar cap: 1977–1978 Viking observations.
772 *Journal of Geophysical Research*, 84, 8332–8334.
773 <https://doi.org/10.1029/JB084iB14p08332>

774 James, P. B. (1982). Recession of Martian north polar cap: 1979–1980 Viking observations.
775 *Icarus*, 52(3), 565–569. [https://doi.org/10.1016/0019-1035\(82\)90016-1](https://doi.org/10.1016/0019-1035(82)90016-1)

776 James, P. B., Briggs, G., Barnes, J., & Spruck, A. (1979). Seasonal recession of Mars' south
777 polar caps as seen by Viking. *Journal of Geophysical Research*, 84, 2889–2922.
778 <https://doi.org/10.1029/JB084iB06p02889>

779 James, P. B., & Cantor, B. A. (2001). Martian north polar cap recession: 2000 Mars Orbiter
780 Camera Observations. *Icarus*, 154(1), 131–144. <https://doi.org/10.1006/icar.2001.6653>

781 James, P. B., & Cantor, B. A. (2002). Atmospheric monitoring of Mars by the Mars Orbiter
782 Camera on Mars Global Surveyor. *Advances in Space Research*, 29(2), 121–129.
783 [https://doi.org/10.1016/S0273-1177\(01\)00561-0](https://doi.org/10.1016/S0273-1177(01)00561-0)

784 James, P. B., Cantor, B. A., & Davis, S. (2001). Mars Orbiter Camera observations of the
785 Martian south polar cap in 1999–2000. *Journal of Geophysical Research*, 106(E10),
786 23635–23652. <https://doi.org/10.1029/2000JE001313>

787 Leung, C. W. S., Rafkin, S. C. R., Stillman, D. E., & McEwen, A. S. (2016). Fogs and Clouds
788 are a potential indicator of a local water source in Valles Marineris. in *Lunar and*
789 *Planetary Science Conference*, The Woodlands, TX.
790 <https://www.hou.usra.edu/meetings/lpsc2016/pdf/2878.pdf>

791 Lee, S. W. (1986). Regional sources and sinks of dust on Mars: Viking observations of Cerberus,
792 Solis Planum, and Syrtis Major. in *Symposium on Mars: Evolution of its Climate and*
793 *Atmosphere*, Washington, D.C.
794 <https://articles.adsabs.harvard.edu/pdf/1986LPICo.599...57L>

795 Malin, M. C., Danielson, G. E., Ravine, M. A., & Soulanille, T. A. (1991). Design and
796 development of the Mars observer camera. *International Journal of Imaging Systems and*
797 *Technology*, 3(2), 76–91. <http://doi.org/10.1002/ima.1850030205>

798 Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., et al. (2018). The Mars
799 Climate Database. Presented at *From Mars Express to ExoMars*, Madrid, Spain, 27–28
800 February 2018.

801 Mitchel, O. M., Observations of Mars, *Sidereal Messenger*, 2, 101, 1846.

802 Mouginis-Mark, P. J., Cintala, M. J., & Whitford-Stark, J. L. (1980). Geological constraints for
803 the Solis Planum "oasis" on Mars. in *Lunar and Planetary Science Conference*, Houston,
804 TX. <https://articles.adsabs.harvard.edu/pdf/1980LPI....11..762M>

805 O'Leary, B., & Jackel, L. (1970). The 1969 opposition effect of Mars. Full disk, Syrtis Major and
806 Arabia. *Icarus*, 13(3), 437–448. [https://doi.org/10.1016/0019-1035\(70\)90091-6](https://doi.org/10.1016/0019-1035(70)90091-6)

807 Read, P. L., Collins, M., Forget, F., Fournier, R., Hourdin, F., Lewis, S. R., et al. (1997). A GCM
808 climate database for Mars: For mission planning and for scientific studies. *Advances in*
809 *Space Research*, 19(8), 1213–1222. [http://doi.org/10.1016/S0273-1177\(97\)00272-X](http://doi.org/10.1016/S0273-1177(97)00272-X)

810 Robbins, S. J., Hynek, B. M., Lillis, R. J., & Bottke, W. F. (2013). Large impact crater histories
811 of Mars: The effect of different model crater age techniques. *Icarus*, 225, 173–184.
812 <http://doi.org/10.1016/j.icarus.2013.03.019>

813 Robbins, S. J. (2020). Mars's Red (575–625 nm) seasonal approximate reflectivity averaged over
814 Mars Years 24–28 from Mars Orbiter Camera. *Journal of Geophysical Research*, 125,
815 e2019JE006231. <http://doi.org/10.1029/2019JE006231>

816 Robbins, S. J. (2021). Mars Orbiter Camera Red and Blue Global Mosaics for 1999 through
817 2006 (Version 1.0.0) [Data set]. Zenodo. <http://doi.org/10.5281/zenodo.5526893>

818 Robbins, S. J. (202X). Mars Global Surveyor's Mars Orbiter Camera (MOC) Wide-Angle
819 Images (1999–2006): 1. Data Processing. [submitted to Earth & Space Science](#)

820 concurrently with this manuscript as a companion

821 Robbins, S. J. (202X). Mars Orbiter Camera Red and Blue Global Mosaics for 1999 through
822 2006 (Version 1.0.0) [Data set]. NASA PDS. <https://ToBeFilledInIfAccepted>

823 Slipher, E. C. (1921) Obscuration of the Martian Syrtis Major. *Popular Astronomy*, 29, 66–73.
824 <https://articles.adsabs.harvard.edu/pdf/1921PA.....29...69S>

825 Slipher, E. C. (1962) *The Photographic Story of Mars*. Sky Publishing Corp., Cambridge, MA.

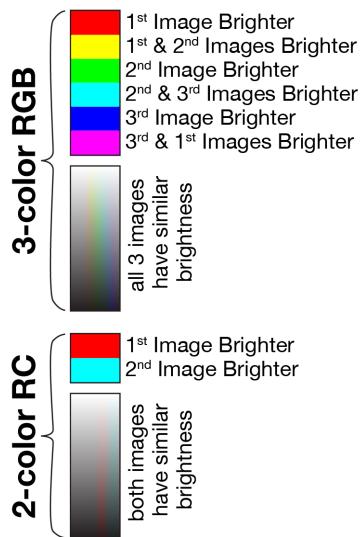
826 Soderblom, L. A., Malin, M. C., Cutts, J. A., & Murray, B. C. (1973). Mariner 9 observations of
827 the surface of Mars in the north polar region. *Journal of Geophysical Research*, 78(20),
828 4197–4210. <https://doi.org/10.1029/JB078i020p04197>

829 Thompson, D. T. (1972). The variation in contrast of Syrtis Major in 1971. *Bulletin of the
830 American Astronomical Society*, 4, 313.

831 Wang, H., & Ingersoll, A. P. (2002). Martian clouds observed by the Mars Global Surveyor Mars
832 Orbiter Camera. *Journal of Geophysical Research*, 107(E10:5078), 8pp.
833 <http://doi.org/10.1029/2001JE001815>

834 Wang, H., & Richardson, M. I. (2015). The origin, evolution, and trajectory of large dust storms
835 on Mars during Mars years 24–30 (1999–2011). *Icarus*, 251, 112–127.
836 <https://doi.org/10.1016/j.icarus.2013.10.033>

837 Wang, H., Toigo, A. D., & Richardson, M. I. (2011). Curvilinear features in the southern
838 hemisphere observed by Mars Global Surveyor Mars Orbiter Camera. *Icarus*, 2015(1),
839 242–252. <https://doi.org/10.1016/j.icarus.2011.06.029>


840 Wellington, D. F., & Bell, J. F. (2020). Patterns of surface albedo changes from Mars
841 Reconnaissance Orbiter Mars Color Imager (MARCI) observations. *Icarus*, 239(113766).
842 <http://doi.org/10.1016/j.icarus.2020.113766>

843 Zinzi, A., Palomba, E., & D'Amore, M. (2006). Monitoring albedo variations on Syrtis Major
844 region of Mars from 1999 to 2004. in European Planetary Science Congress, Berlin,
845 Germany. <https://articles.adsabs.harvard.edu/pdf/2006epsc.conf...95Z>

846

847 ***SEE SEPARATE UPLOAD DUE TO FILE SIZE***
848 Figure 1. Basemaps are an average, in order, of $L_s = 0^\circ, 180^\circ, 90^\circ$, and 270° (each $\pm 5^\circ$, and the
849 averages are from MY24–28). Top two panels are equirectangular projections, bottom two are
850 north (left) and south (right) polar stereographic. Top—Nomenclature map for each feature
851 discussed in the text. Larger font size indicates larger features (e.g., Tharsis covers $\approx 25\%$ of
852 Mars). Other—Graticule guide in the different projections. [© Note: This identical figure is
853 used in the companion paper.]

854
855 ***Note for Reviewers/Editors/Typesetters: Figure should be full-page width, color.***

856

857 Figure 2. Red-green-blue and red-cyan color scale bars. Note that approximately equal
858 brightness in each band will still show a slight color, so significance is only derived when there
859 is a substantial difference, seen as a significant color saturation.

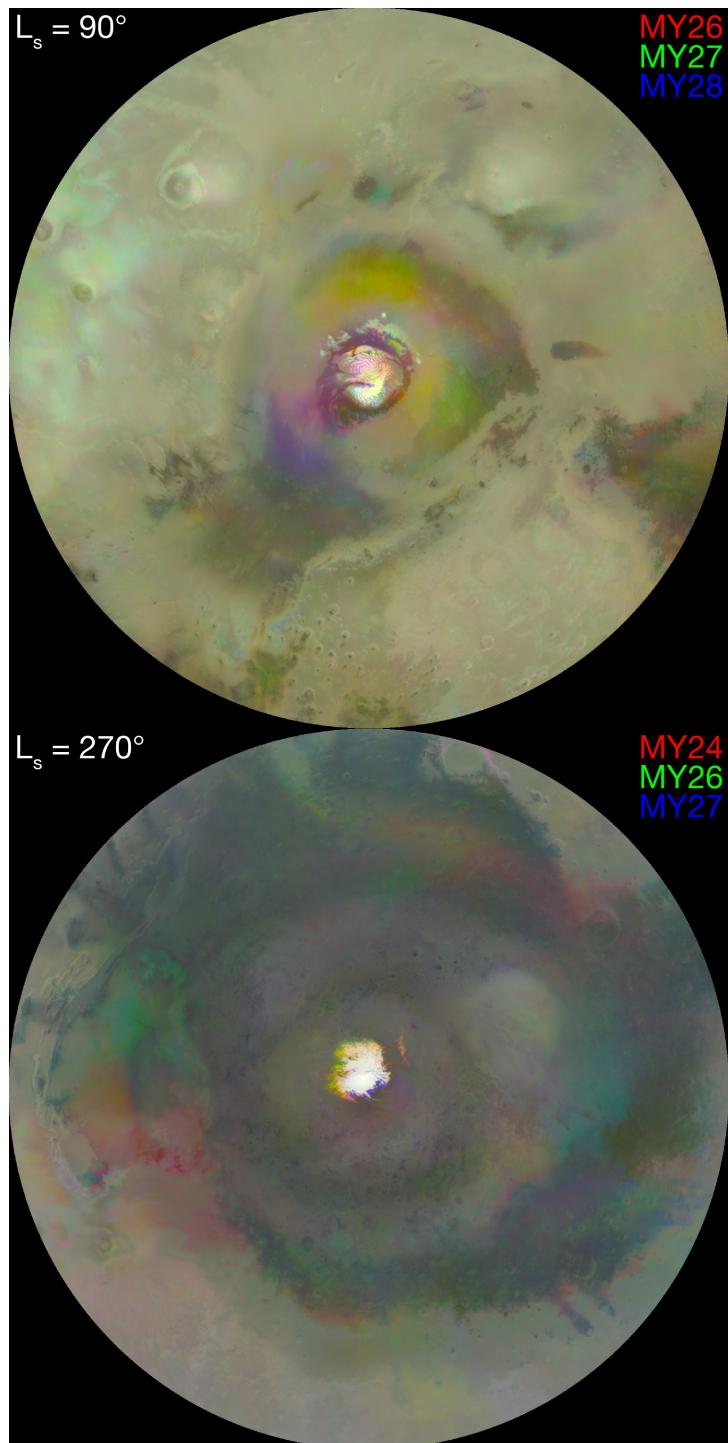
860

861 ***Note for Reviewers/Editors/Typesetters: Figure should be third-page width, color.***


862

863 ***SEE SEPARATE UPLOAD DUE TO FILE SIZE***

864 Figure 3. RC composite showing Mars before versus after the 2001 dust storm. See Figure 2 for
865 color scale interpretation. The significantly redder bands at southern latitudes indicate $L_s = 180^\circ$
866 was brighter there, which is due to seasonal frost that sublimated by $L_s = 270^\circ$.


867

868 *Note for Reviewers/Editors/Typesetters: Figure should be full-page width, color.*

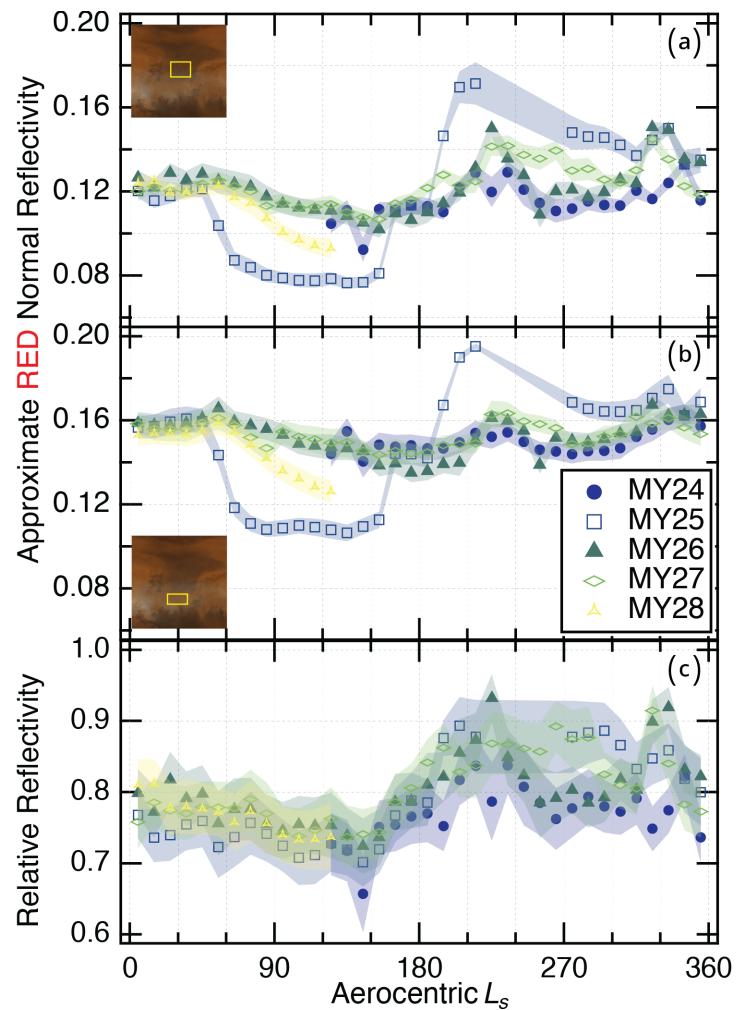
869
870 Figure 4. North (top row) and South (bottom row) polar projections showing changes in the
871 residual polar ice caps and surrounding terrain as the seasons progress past each solstice for
872 different Mars Years. Images are an RGB composite of MOC-WA red filter mosaics. See
873 Figure 2 for color scale interpretation.

874
875 ***Note for Reviewers/Editors/Typesetters: Figure should be full-page width, color.***

876

877 Figure 5. North (top) and South (bottom) polar projections showing changes in the residual polar
878 ice caps and surrounding terrain as the Mars Year changes. Images are an RGB composite of
879 MOC-WA red filter mosaics (see Figure 2 for color scale interpretation). Despite having four
880 years of data at each L_s, only three are shown because of the color composite method. MY25

881 was omitted from the north because of the gain sag discussed in the text, and it was omitted from
882 the south because it was an abnormal year with a global dust storm.

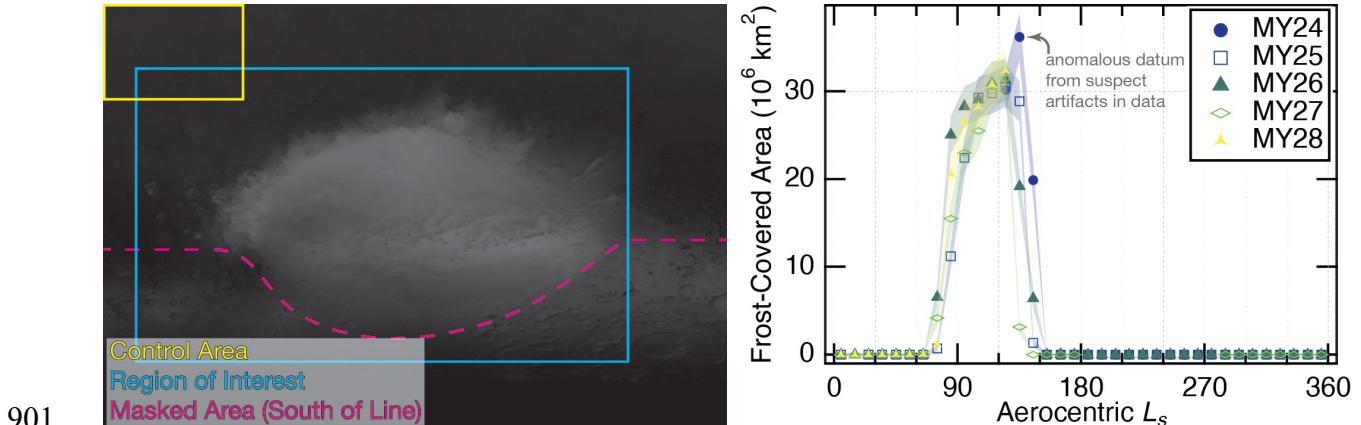

883

884 ***Note for Reviewers/Editors/Typesetters: Figure should be third-page width, color.***

885 ***SEE SEPARATE UPLOAD DUE TO FILE SIZE***
886 Figure 6. RGB composites of three Mars Years at six L_s , evenly spaced by 60° of L_s , using
887 MOC-WA red filter data (see Figure 2 for color scale interpretation). MY25 was avoided for L_s
888 = 0–120° due to known gain issues, while MY25 was avoided for L_s = 180–300° due to the
889 global dust storm. The MOC-WA blue camera was not used due to issues processing MY27
890 data, and the purpose of this Figure is to illustrate surface rather than cloud differences.

891

892 *Note for Reviewers/Editors/Typesetters: Figure should be full-page width, color.*



893

894 Figure 7. Periodic variation in red reflectivity of Acidalia Planitia (A) compared with Chryse
895 Planitia (B), with each datum being the average of pixel values in the yellow boxes. Panel (C)
896 shows the top divided by the middle to show relative variation, treating Chryse as a control.
897 Error bands in the top and middle panel reflect standard deviations within each region, bottom
898 panel bands used standard propagation of uncertainty methods.

899

900 **Note for Reviewers/Editors/Typesetters: Figure should be half-page width, color.**

901 Figure 8. Hellas crater frost analysis in blue light. The left panel shows the region of interest
902 along with the area that were masked from analysis and the area to the northwest that was used
903 as a gain control. The right panel shows the results as an area of frost coverage when using
904 brightness values $>7.5\%$ reflectivity in the blue data.

905
906
907 ***Note for Reviewers/Editors/Typesetters: Figure should be full-page width, color.***